skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Johnson, Eric M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Initially proposed by Lovric and Scholz to explain redox reactions in solid-phase voltammetry, the Scholz model’s applications have expanded to redox reactions in various materials. As an extension of the Cottrell equation, the Scholz model enabled the quantification of electron hopping and ion diffusion with coefficients, De and Di, respectively. Research utilizing the Scholz model indicated that, in most cases, a huge bottleneck results from the ion diffusion which is slower than electron hopping by orders of magnitude. Therefore, electron and ion motion can be tuned and optimized to increase the charge transport and conductivity through systematic investigations guided by the Scholz model. The strategy may be extended to other solid-state materials in the future, e.g., battery anodes/cathodes. In this Perspective, the applications of the Scholz model in different materials will be discussed. Moreover, the limitations of the Scholz model will also be introduced, and viable solutions to those limitations discussed. 
    more » « less